Continuous Domain Analysis of Graph Laplacian Regularization for Image Denoising

Presenter: Gene Cheung
National Institute of Informatics

Outline

- Introduction
- Convergence of the Graph Laplacian Regularizer
- Justification of the Graph Laplacian Regularizer
- Formulation and Algorithm
- Experimental Results
- Towards the Optimal Graph Laplacian Regularizer
- Conclusion

Lena, $\sigma = 30$
Outline

• Introduction
• Convergence of the Graph Laplacian Regularizer
• Justification of the Graph Laplacian Regularizer
• Formulation and Algorithm
• Experimental Results
• Towards the Optimal Graph Laplacian Regularizer
• Conclusion

Lena, \(\sigma = 30 \)
Motivation (I)

- Image denoising—a basic restoration problem:

\[y = x + e \]

observation → noise desired signal

- It is under-determined, needs image priors for regularization

\[\min_x \|y - x\|^2_2 + \lambda \text{ prior}(x) \]

fidelity term prior term

- Graph Laplacian regularizer: should be small for target patch \(x \)

\[S_G(x) = x^T L x \quad L = D - A \]

graph Laplacian matrix

- Many works use Gaussian kernel to compute graph weights [2]:

\[w_{ij} = \exp\left(\frac{\text{dist}(i, j)^2}{\sigma^2}\right) \]

\(\text{dist}(i, j) \) is some distance metric between pixels \(i \) and \(j \)

Motivation (II)

• However...
 a. Why is \(S_G(x) = x^T Lx \) a good prior?
 b. Why using Gaussian kernel for edge weights?
 c. How to design a discriminant \(x^T Lx \) for restoration?

• We answer these by viewing
 • discrete graph as \textit{samples} of high-dimensional manifold.
Our Contributions

1. Using Gaussian kernel to compute graph weights, \(S_G(x) = x^T L x \) converges to a continuous functional \(S_\Omega \), which can be interpreted as regularizer in continuous domain.

2. Analysis of functional \(S_\Omega \) provides understanding of what signals are being discriminated and to what extent, on a point-by-point basis in the continuous domain.

3. We design a discriminant \(S_\Omega \) for regularization in continuous domain, then obtain the graph Laplacian regularizer \(S_G \).
Outline

• Introduction
• Convergence of the Graph Laplacian Regularizer
• Justification of the Graph Laplacian Regularizer
• Formulation and Algorithm
• Experimental Results
• Towards the Optimal Graph Laplacian Regularizer
• Conclusion

Lena, $\sigma = 30$
Road Map

Continuous Domain

Choose the continuous feature functions \(\{ f_n \}_{n=1}^N \)

Get metric space \(G \in \mathbb{R}^{2 \times 2} \) on point-by-point basis

Obtain continuous functional \(S_\Omega(h) \)

Discrete Domain

Sample \(\{ f_n \}_{n=1}^N \) to obtain the discrete \(\{ f_n^D \}_{n=1}^N \)

Compute the weights and Laplacian \(L \in \mathbb{R}^{M \times M} \)

Graph Laplacian Regularizer \(S_G(h^D) \)

- Different \(\{ f_n \}_{n=1}^N \) leads to different regularization behavior!
Graph Construction (I)

• First, define:
 • 2D domain \(\Omega \subset \mathbb{R}^2 \)
 — the shape of an image
 • \(\Gamma = \left\{ \mathbf{s}_i = [x_i, y_i]^T \mid \mathbf{s}_i \in \Omega, 1 \leq i \leq M \right\} \)
 — a set of \(M \) random samples uniformly distributed on \(\Omega \), construed as pixel locations

• (Freely) choose \(N \) continuous functions
 \[f_n(x, y) : \Omega \to \mathbb{R}, \ 1 \leq n \leq N \]
called feature functions, can be
 • intensity for gray-scale image \((N = 1) \)
 • \(R, G, B \) channels for color image \((N = 3) \)
Graph Construction (II)

- Sampling f_n at positions in Γ gives N discretized feature functions

$$f_n^D = [f_n(x_1, y_1) f_n(x_2, y_2) \ldots f_n(x_M, y_M)]^T$$

- For each pixel location $s_i \in \Gamma$, define a length $N + 2$ vector

$$v_i = [x_i \ y_i \ \beta f_1^D(i) \ \beta f_2^D(i) \ \ldots \ \beta f_N^D(i)]^T$$

β is a tunable constant

- Build a graph G with M vertices, each pixel location $s_i \in \Gamma$ have a vertex v_i
Graph Construction (III)

- Weight between vertices V_i and V_j

 - Degree before normalization
 \[\rho_i = \sum_{j=1}^{m} \psi(d_{ij}) \]

 - Weight function
 \[w_{ij} = (\rho_i \rho_j)^{-\gamma} \psi(d_{ij}) \]

 - Normalization factor γ

 - clipped Gaussian kernel
 \[\psi(d) = \begin{cases}
 \exp\left(-\frac{d^2}{2\sigma^2}\right) & |d| \leq r, \\
 0 & \text{otherwise}
 \end{cases} \]

 - Where $r = \varepsilon C_r$ and C_r is a constant

- G is an r-neighborhood graph, i.e., no edge connecting two vertices with distance greater than r
Graph Construction (IV)

- Our graph G is very general
 - e.g., choose a small β with proper r, obtain the 2D grid graph

$$
\begin{align*}
\mathbf{A} & \text{ — its } (i, j) \text{ entry is } w_{ij} \\
\mathbf{D} & \text{ — its } (i, j) \text{ entry is } \sum_{j=1}^{m} w_{ij}
\end{align*}
$$

unnormalized Graph Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{A}$

- $h(x, y): \Omega \rightarrow \mathbb{R}$ is a continuous candidate function
 $$
 \mathbf{h}^D = [h(x_1, y_1) \ h(x_2, y_2) \ldots h(x_M, y_M)]^T \quad \text{— samples of } h(x, y)
 $$

- $S_G(\mathbf{h}^D) = (\mathbf{h}^D)^T \mathbf{Lh}^D \quad \text{— graph Laplacian regularizer, a functional on } \mathbb{R}^M$
Convergence of the Graph Laplacian Regularizer (I)

- The continuous counterpart of S_G is a functional S_Ω on domain Ω

$$S_\Omega(h) = \iint_{\Omega} (\nabla h)^T G^{-1} (\nabla h) \left(\sqrt{\det G} \right)^{2^{y-1}} \, dx dy$$

$$\nabla h = [\partial_x h \quad \partial_y h]^T$$ is the gradient of h

- G is a 2-by-2 matrix:

$$G = I + \beta^2 \begin{bmatrix} \sum_{n=1}^{N} (\partial_x f_n)^2 & \sum_{n=1}^{N} \partial_x f_n \cdot \partial_y f_n \\ \sum_{n=1}^{N} \partial_x f_n \cdot \partial_y f_n & \sum_{n=1}^{N} (\partial_y f_n)^2 \end{bmatrix} = I + \beta^2 \sum_{n=1}^{N} \nabla f_n \cdot (\nabla f_n)^T$$

Structure tensor [3] of the gradients $\{\nabla f_n(x, y)\}_{n=1}^{N}$

- G is computed from $\{\nabla f_n\}_{n=1}^{N}$ on a point-by-point basis

Roadmap

- Features $\{f_n\}_{n=1}^{N}$
- Samples $\{f^D_n\}_{n=1}^{N}$
- Matrix $G \in \mathbb{R}^{2 \times 2}$
- Graph weights, and $L \in \mathbb{R}^{M \times M}$
- Functional $S_\Omega(h)$
- Regularizer $S_G(h^D)$

Convergence of the Graph Laplacian Regularizer (II)

- **Theorem**: convergence of S_G to S_Ω

$$\lim_{M \to \infty} \lim_{\varepsilon \to 0} \frac{M^{2\gamma-1}}{\varepsilon^{4(1-\gamma)}(M-1)} S_G(h^D) \sim S_\Omega(h)$$

number of samples M increases neighborhood $r = \varepsilon C_r$ shrinks

"\sim" means there exist a constant such that equality holds.

- With results of [4], we proved it by viewing a graph as proxy of an $N + 2$-dimensional Riemannian manifold

| Vertex V_i | Coordinate on Ω: $s_i = (x_i, y_i)$ | Coordinate on $(N+2)$-D manifold: $v_i = [x_i, y_i, \beta f_1^D(i), \beta f_2^D(i), \ldots, \beta f_N^D(i)]^T$ |

Outline

• Introduction
• Convergence of the Graph Laplacian Regularizer
• Justification of the Graph Laplacian Regularizer
• Formulation and Algorithm
• Experimental Results
• Towards the Optimal Graph Laplacian Regularizer
• Conclusion
Justification of Graph Laplacian Regularizer (I)

\[
S_\Omega(h) = \int_\Omega (\nabla h)^T G^{-1} (\nabla h) \left(\sqrt{\det G}\right)^{2\gamma-1} \, dx\,dy
\]

\[
G = I + \beta^2 \sum_{n=1}^{N} \nabla f_n \cdot (\nabla f_n)^T
\]

\[
S_G(h^D) = (h^D)^T L h^D
\]

- \(S_G\) converges to \(S_\Omega\),
 With \(S_\Omega\), any new insights we can gain on \(S_G\)??
 - The eigen-space of \(G\) reflects statistics of \(\{\nabla f_n\}_{n=1}^{N}\)
 - \((\nabla h)^T G^{-1} (\nabla h)\) measures length of \(\nabla h\) in a metric space established by \(G\)!
 - \(S_\Omega\) integrates the gradient norm
Justification of Graph Laplacian Regularizer (II)

- **Metric space defined by** G

Ellipses are norm-balls, reflects how concentration of $\{\nabla f_n\}_{n=1}^N$

Green dots are $\{\nabla f_n(x, y)\}_{n=1}^N$

l: Eigenvector corresponds to the largest eigenvalue of G, goes through the cluster of $\{\nabla f_n\}_{n=1}^N$

\[
S_\Omega(h) = \iint_\Omega (\nabla h)^T G^{-1} (\nabla h) \left(\sqrt{\det G} \right)^{2\gamma-1} dx dy
\]

\[
G = I + \beta^2 \sum_{n=1}^N \nabla f_n \cdot (\nabla f_n)^T
\]
Justification of Graph Laplacian Regularizer (III)

- The 2D metric space provides a clear picture of what signals are being discriminated and to what extent, on a point-by-point basis in the continuous domain!

- (a) is more skewed, or discriminant, than (b)
- In (a), a small distance away from the direction orthogonal to l brings large metric distance
Justification of Graph Laplacian Regularizer (IV)

• **Lesson**: Select feature functions properly!

• Suppose A is the truth gradient, choose $\{f_n\}_{n=1}^N$ such that

 • (i) l goes through A;
 • (ii) Ellipses stretched flat along l.

\[
\frac{\partial}{\partial x} \frac{\partial}{\partial y} A(l)
\]

(a) A good scheme, $\{\nabla f_n\}_{n=1}^N$ are similar to the ground-truth A

(b) A bad scheme...

• For the case of discrete images, one can seek for similar patches in terms of gradient!
Outline

- Introduction
- Convergence of the Graph Laplacian Regularizer
- Justification of the Graph Laplacian Regularizer
- Formulation and Algorithm
- Experimental Results
- Towards the Optimal Graph Laplacian Regularizer
- Conclusion

Lena, $\sigma = 30$
Problem Formulation and Algorithm Development

- Adopt a **patch-based** recovery framework to denoise the image
- For a noisy patch p_0 on the image
 1. Assume a “**self-similar-in-gradient**” image model, search for $K-1$ patches similar to p_0 in terms of gradient in *pre-filtered* image.
 2. Compute graph Laplacian from the similar patches.
 3. Solve the unconstrained quadratic optimization iteratively:

$$q^* = \arg\min_{q} \| p_0 - q \|_2^2 + \lambda q^T L q$$

 to obtain the denoised patch q^*

- Aggregate denoised patches to form an updated image.
- Denoise the given image iteratively to gradually enhance its quality.
- Our denoising method is named **Graph-based Denoising using Gradient-based Self-similarity (GDGS)**
Outline

• Introduction
• Convergence of the Graph Laplacian Regularizer
• Justification of the Graph Laplacian Regularizer
• Formulation and Algorithm
• Experimental Results
• Towards the Optimal Graph Laplacian Regularizer
• Conclusion

Lena, $\sigma = 30$
Experimental Results (I)

- Test images: Lena, Barbara, Boats and Peppers
- i.i.d. Additive White Gaussian Noise (AWGN)
- Non-Local GBT (NLGBT) – an existing graph-based denoising method [5]
- Compared to BF, NLM and NLGBT

![Performance comparisons in PSNR (dB)]

<table>
<thead>
<tr>
<th>Image</th>
<th>Method</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Lena</td>
<td>GDGS</td>
<td>33.47</td>
</tr>
<tr>
<td></td>
<td>NLM</td>
<td>32.03</td>
</tr>
<tr>
<td></td>
<td>BF</td>
<td>27.00</td>
</tr>
<tr>
<td></td>
<td>NLGBT</td>
<td></td>
</tr>
<tr>
<td>Barbara</td>
<td>GDGS</td>
<td>31.71</td>
</tr>
<tr>
<td></td>
<td>NLM</td>
<td>30.76</td>
</tr>
<tr>
<td></td>
<td>BF</td>
<td>25.78</td>
</tr>
<tr>
<td></td>
<td>NLGBT</td>
<td></td>
</tr>
<tr>
<td>Boats</td>
<td>GDGS</td>
<td>31.59</td>
</tr>
<tr>
<td></td>
<td>NLM</td>
<td>30.69</td>
</tr>
<tr>
<td></td>
<td>BF</td>
<td>26.42</td>
</tr>
<tr>
<td></td>
<td>NLGBT</td>
<td></td>
</tr>
<tr>
<td>Peppers</td>
<td>GDGS</td>
<td>33.30</td>
</tr>
<tr>
<td></td>
<td>NLM</td>
<td>31.96</td>
</tr>
<tr>
<td></td>
<td>BF</td>
<td>28.96</td>
</tr>
<tr>
<td></td>
<td>NLGBT</td>
<td></td>
</tr>
</tbody>
</table>

1.4 dB better than NLM!

Experimental Results (II)

- GDGS vs NLGBT

GDGS

NLGBT

GDGS (31.39 dB)

NLM (30.38 dB)

- GDGS vs NLM

GDGS

NLGBT

GDGS (29.34 dB)

NLM (28.62 dB)

Noise standard deviation $\sigma = 25$
Outline

• Introduction
• Convergence of the Graph Laplacian Regularizer
• Justification of the Graph Laplacian Regularizer
• Formulation and Algorithm
• Experimental Results
• Towards the Optimal Graph Laplacian Regularizer
• Conclusion

$Lena, \sigma = 30$
Towards Optimal Graph Laplacian Regularization

- Our latest work [6] derives the optimal metric space G^*, leading to optimal graph Laplacian regularization for denoising.

- Metric space should be discriminant to the extent that estimates of ground-truth gradient are reliable.

\[
G^* = \arg \min_G \int \int_{\Delta} \|G - G_0(g)\|_F^2 \Pr \left(g \middle| \{g_k\}_{k=0}^{K-1} \right) \, dg
\]

Δ—whole gradient domain

Ideal metric space given ground truth g

Outline

- Introduction
- Convergence of the Graph Laplacian Regularizer
- Justification of the Graph Laplacian Regularizer
- Formulation and Algorithm
- Experimental Results
- Towards the Optimal Graph Laplacian Regularizer
- Conclusion

Lena, $\sigma = 30$
Conclusion

• Image denoising is an ill-posed problem and requires good priors for regularization.

• graph Laplacian regularizer with Gaussian kernel weights converges to a continuous functional.

• Analysis of the continuous functional provides theoretical justification of why and under what conditions the graph Laplacian regularizer can be discriminant.

• Our denoising algorithm with graph Laplacian regularizer and gradient-based similarity out-performs NLM by up to 1.4 dB.

• Our latest work obtains the optimal graph Laplacian, which is discriminant when the estimates are accurate, and robust when the estimates are not.
Thank You!

Contact: Gene Cheung (cheung@.nii.ac.jp)
Jiahao Pang (jpang@ust.hk)